

From Uncertainty to Certainty: Strategies for Deterministic LLMOps

Amanda Milberg, Dataiku June 2024

Discussion Points

The LLM Landscape

- Discuss the growing LLM Landscape from 2018 present
- Outline key factors when building a LLM ecosystem to meet business needs

Strategies for LLMOps

- Define the term LLMOps
- Differences between AI / ML vs LLMs workflows
- Common problems and proposed solutions for monitoring LLMs

Product Demo

- Discuss an illustrative use case building a RAG application in Dataiku
- Mock up a LLMOps solution based on strategies disucssed

The LLM Landscape

How many Large Language Models have been developed and released to date?

The Growing LLM Landscape

There are over 125 LLMs available in the model landscape

- Expressation is that model
- Materials acting to the search of the s
- Aidleancements in both models with newer performannty and models replacing old ones

Source: https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

One size *does not* fit all

An enterprise needs multiple LLMs to meet business needs

Cost to Serve

- Choose a models that is adaptive to your needs
 - Self Hosted vs. API Provider
 - Text vs Image
 - Task Specific vs. All Knowing
- Universal, all knowing LLMs can quickly rack up costs

Latency & Locality

- Response time differs between models
- Models may need to be adapted to abide by regional laws
- Models may need to be local to an edge device (e.g. phone)

Domain Specific Needs

- Leverage or adapt models to a specific domain (e.g. FinGPT)
- Match a business problems with appropriate model in terms of cost / risk profile, relevance of data security

Future enterprises will need to manage at least a dozen large language models

An illustrative multi-model landscape

Foundational Models

Fine Tuned Large Language Models

RAG Pipelines

LLM Mesh

While the models may change...

...the challenge remains the same

Strategies For LLMOps

The Model Development Lifecycle

AI / ML vs LLMs

Areas of focus in LLMOps

Key Differentiators from AI / ML to LLMs

	AI / ML	LLMs
1. Data Required	Data Hungry	Zero / Few Shot Learning
2. Compute Resources	Require CPUs	Require GPUs
3. Cost to Serve	Constrained and	Recurring Costs
	Expected	
4. Model Output	Deterministic	Non Deterministic
5. Model Metrics	F1, Precision, Recall, AUC	BERTScore Faithfullness
O. HOUGE HELLICS	T 1, 1 recision, Recall, ACC	BERTScore, Faithfuilless

Managing a LLM is like managing 100 interns

Problem Non Deterministic **Human Review Recurring Costs** Machines Solution Guardrails / **Automated LLM Cost Review** LLM-as-a-Judge **Monitoring**

Let's See It In Action

Illustrative Use Case

Build and Monitor a Chatbot in Dataiku

- Build out a RAG application in Dataiku using the LLM Mesh leveraging LLMs hosted by Databricks
- Implement LLM-as-a-Judge Approach using custom GenAl MLFlow Metrics and track them in a Evaluation Store
- Create metrics on overall pipeline performance and define a weighted score for model evaluation
- Monitor all LLM Costs across projects with LLM Cost Review Dashboard

Step 1: Build out a RAG Pipeline

Illustrative Use Case

Step 1: Build out a RAG Pipeline

Step 2: Implementing LLM-as-a-Judge

Illustrative Use Case

Step 2: Implementing LLM-as-a-Judge

MLFlow Pre Canned GenAl Metrics

Step 2: Implementing LLM-as-a-Judge

Evaluation Stores in Dataiku

Experiment Tracking with MLFlow

Track metrics overtime in Evaluation Store

LLM-as-a-Judge Framework

Tips and Tricks

Implement a Weighting System

Create a weighting system that factors your business needs. This may be tuned for each application.

60% Correctness 20% Faithfulness 20% Professionalism

Compare LLM-as-Judges

Use a less robust model for grading system and keep that system on a small scale (e.g. 1-5)

GPT 3.5 drives down the cost of the judge by 10x and increased the speed by 3x

Leverage Combined Strategies

Compare Prompt
Engineering strategies to
avoid bias and improve
reliability

Low Temperature (0.1)
Chain of Thought
Prompting
Few Shot Learning

Step 3: Monitoring and Alerting

Add metrics / checks to alert overall performance of RAG pipeline

Set Thresholds to
Track Metrics
Overtime with
Metrics and Checks

Step 3: Monitoring and Alerting

Develop a weighted scored on record level

Step 4. LLM Cost Review Dashboard

Monitor individual projects and overall LLM Costs

To Wrap Up

Key Takeaways

Final thoughts..

LLM Mesh Enables Scalability

Enterprises need a meshtype architecture to scale to a multi-model ecosystem

Evaluate LLMs with Guardrails

LLM-as-a-Judge is a promising approach to achieve human like evaluation in an automated way

Monitor and Alert with LLM Cost Review

Enabling insights to track and review LLM costs is key to finding ROI and proving value

Implement an LLMOps Strategy...

...Or your company will be the next viral internet meme

Thank You

Amanda Milberg Dataiku, Booth #85 amanda.milberg@dataiku.com

